The DTW-based representation space for seismic pattern classification
نویسندگان
چکیده
Distinguishing among the different seismic volcanic patterns is still one of the most important and laborintensive tasks for volcano monitoring. This task could be lightened and made free from subjective bias by using automatic classification techniques. In this context, a core but often overlooked issue is the choice of an appropriate representation of the data to be classified. Recently, it has been suggested that using a relative representation (i.e. proximities, namely dissimilarities on pairs of objects) instead of an absolute one (i.e. features, namely measurements on single objects) is advantageous to exploit the relational information contained in the dissimilarities to derive highly discriminant vector spaces, where any classifier can be used. According to that motivation, this paper investigates the suitability of a dynamic time warping (DTW) dissimilarity-based vector representation for the classification of seismic patterns. Results show the usefulness of such a representation in the seismic pattern classification scenario, including analyses of potential benefits from recent advances in the dissimilarity-based paradigm such as the proper selection of representation sets and the combination of different dissimilarity representations that might be available for the same data. & 2015 Elsevier Ltd. All rights reserved.
منابع مشابه
Fisher Discriminant Analysis (FDA), a supervised feature reduction method in seismic object detection
Automatic processes on seismic data using pattern recognition is one of the interesting fields in geophysical data interpretation. One part is the seismic object detection using different supervised classification methods that finally has an output as a probability cube. Object detection process starts with generating a pickset of two classes labeled as object and non-object and then selecting ...
متن کاملRedundant Hash Addressing for Large-Scale Query by Example Spoken Query Detection
State of the art query by example spoken term detection (QbE-STD) systems rely on representation of speech in terms of sequences of class-conditional posterior probabilities estimated by deep neural network (DNN). The posteriors are often used for pattern matching or dynamic time warping (DTW). Exploiting posterior probabilities as speech representation propounds diverse advantages in a classif...
متن کاملHyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations
The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...
متن کاملHand Gestures Classification with Multi-Core DTW
Classifications of several gesture types are very helpful in several applications. This paper tries to address fast classifications of hand gestures using DTW over multi-core simple processors. We presented a methodology to distribute templates over multi-cores and then allow parallel execution of the classification. The results were presented to voting algorithm in which the majority vote was ...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Geosciences
دوره 85 شماره
صفحات -
تاریخ انتشار 2015